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SUMMARY

We develop change-point methodology for identifying dynamic trends in the scale and shape parameters of
a Weibull distribution. The methodology includes asymptotics of the likelihood ratio statistic for detecting
unknown changes in the parameters as well as asymptotics of the maximum likelihood estimate of the
unknown change-point. The developed methodology is applied to detect dynamic changes in the minimum
temperatures of Uppsala, Sweden. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the area of environmental monitoring and assessment, environmentalists frequently encounter
the problem of identifying dynamic trends (non-stationarities) in location, scale and/or shape of a
proposed model. This has been recently emphasized by Jaruskova (1997). Katz and Brown (1992)
earlier demonstrated how identification of changes in variability (scale and/or shape) help better
predict the occurrence of extreme events in a changing climate. Hot spells and droughts are a
frequent cause of adverse social impact to both humans and animals alike. For instance, Glantz
(1987) studied the recurrent episodes of famine in Africa. Similarly, the primary impacts of
climate on society result from occurrence of such extreme events. A hot spell during the summer
of 1983 in the mid-western US resulted in a substantial decrease in corn yields (Mearns et al.
1984). Deep freezes during the winters of 1983 and 1985 killed a significant fraction of the citrus
trees in the state of Florida (Miller and Glantz 1988). Accurate predictions of such extreme events
will enable the society to be better prepared to cope with the consequences. Katz and Brown
(1992) have shown conclusive evidence that the prediction of such extremities lies largely in
identifying changes in the variability (scale and/or shape) of the climate conditions and to a lesser
extent on scenarios of changes in the average.
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Jaruskova (1997) in a recent article discussed the role and importance of change-point methods
for identifying dynamic trends (non-stationarities) in parameters such as mean and/or variability
of environmental factors. Several studies are available in the literature where change-point
methodology has been effectively implemented in identifying changes in the parameters of
environmental models. Potter (1981) applied the methodology to detect changes in the mean level
of 100-year precipitation series from the North-East US. MacNeill et al. (1991) examined the
annual discharges of the Nile River at Aswan for changes in the mean level, as well as in the serial
correlation structure, and found evidence for changes in both. This data has been earlier analyzed
by many authors, including Cobb (1978). Recently, Brillinger (1994) analyzed the Nile River data
again based on a wavelet approach. Brillinger (1994, 1997) also analyzed the data on monthly
stages of the Rio Nigro River at Manus, Brazil from 1903 to 1992, and found little evidence for
changes in the mean. Thus, change-point methodology has become an indispensable tool for
scientists involved with modeling and monitoring environmental data.

Jaruskova (1994) and Gombay and Horvath (1997) analyzed the monthly averages of
Nacetinsky Creek during the years 1951-1990. They have considered a lognormal model for the
monthly averages data with changes in the scale and shape parameters over time. Since change-
point methods for parameters of a lognormal model are not yet available in the literature, both
Jaruskova (1994) and Gombay and Horvath (1997) carried out the change-point analysis by
applying the log transformation and thus obtaining normality. Jaruskova (1994), however,
pointed out that the log transformation leads to interpretation problems. For example, since
both mean and variance of the normal distribution involve the scale as well as shape parameters
of the lognormal distribution, change in mean only for the transformed data is not easily
interpretable.

The Weibull distribution is also frequently applied for modeling and analyzing data in
environmental sciences and elsewhere. It was developed in 1939 by the Swedish physicist Waloddi
Weibull in order to describe the behavior of the breaking strength of materials. Specifically,
Weibull (1939) demonstrated a statistical analysis that was particularly effective in modeling
experimental fatigue data. Since his early pioneering work, the Weibull distribution has been
used in various fields such as engineering, business, forestry, hydrology, biology and other related
applied areas. In particular, the Weibull distribution has been successfully used in the
probabilistic study of environmental factors. Essenwanger (1976), illustrated the applicability of
several statistical distributions including the Weibull.

It is well known that extreme values of independent data intrinsically follow a Weibull
distribution. As a result the Weibull distribution is widely applied to model data on climato-
logical factors such as maximum/minimum daily temperatures. It also found immense applica-
tions for modeling cumulative damage due to fatigue in materials. In all these applications, one is
naturally interested in incorporating dynamic effects on both scale and shape parameters of the
Weibull distribution. Change-point methods that apply to the parameters of a Weibull model,
however, have not yet been developed in the literature. The lack of such methods has been
explicitly pointed out by de Rijk ef al. (1990). While analyzing data on long term effects of dental
materials caused by their exposure to an environment of oral fluids such as food simulating
liquids, de Rijk e al. (1990) were interested in identifying changes in the growth rates of stress in
dental specimens. They found it appropriate to model the stress growths by a two-parameter
Weibull distribution. Thus, they were clearly looking for change-point methodology for
identifying changes in the Weibull parameters. Pointing out that such methods were not available
in the statistical literature, they carried out their analysis based on purely visual identifications.
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The goal of this paper is to address this lack of availability and develop methods for both
detection as well as estimation of unknown change-points in Weibull parameters. Adapting the
likelihood principle, we first derive the null asymptotic distribution of the likelihood ratio statistic
for the detection of an unknown change-point. We then obtain the asymptotic distribution of the
maximum likelihood estimate (mle) of the change-point. The asymptotic distribution of the
mle enables one to construct confidence interval estimates of any desired level. The parallel
problem of developing change-point methodology for the lognormal distribution is currently in
progress.

We apply the developed methodology to time series data on daily minimum temperatures at
Uppsala, Sweden. Leadbetter er al. (1983) extracted this data from the original manuscripts
compiled by Sverker Hellstrom. The methodology shows evidence of more than one change
occurring in both the scale and shape parameters of a fitted Weibull model. Residual analysis
validates independence among this data, which is a key assumption in our formulation.
Realistically, one might wish to develop the methodology for identifying dynamic trends in time
series data under serial correlations. While some recent advances have been made for the
detection of change-points in serially correlated processes (Davis et al. 1995), the problem of
deriving the asymptotic distribution the estimate of an unknown change-point under correlations
remains open even for standard distributions such as normal and exponential distributions.

2. DETECTION OF CHANGES IN THE WEIBULL PARAMETERS

Several authors addressed the likelihood ratio method for detecting an unknown change-point in
time ordered data. Hawkins (1977) derived the likelihood ratio statistic for detecting change in
the mean of a sequence of normally distributed random variables and computed the finite sample
exact null distribution of the statistic. Worsley (1986) extended the computation of the finite
sample distribution to a sequence of exponential random variables. James et al. (1987) and Kim
and Siegmund (1989) found some approximations for the null exceedence probabilities of the
likelihood ratio statistic. Yao and Davis (1986) and Haccou er al. (1988) established the
asymptotic distribution of the likelihood ratio statistic in the normal and exponential cases,
respectively. They found the null asymptotic distribution to be of a double exponential type
extreme value distribution. Gombay and Horvath (1990) extended this asymptotic result to the
case of testing for the change-point in the mean of a sequence of independent random variables
having a general distribution. Furthermore, the double exponential extreme value limiting
distribution has been shown to hold more generally by Horvath (1993a, 1993b), Gombay and
Horvath (1994a, 1994b, 1996a, 1996b) and Davis et al. (1995). These general situations include
testing for a change-point in multiple parameters, in the parameters of a general linear regression
model and also in the parameters of an auto-regressive process.

In this section, we establish (see Appendix for proof) the validity of the double exponential
distribution for the log likelihood ratio statistic for detecting unknown changes in Weibull
parameters. We begin by letting Y, ..., Y, be a sequence of time-ordered independent random
variables having a two-parameter Weibull distribution with the probability density function of Y,
given by

S o B) = el exp(—apl), o, rand y, >0, i=1, ..., n. (1)
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Our interest is to test for no changes in the Weibull parameters against the alternative that there
exists an unknown change-point. Accordingly, we formulate the statistical hypotheses as:

Hy: 0y=-=o,=0and f; =---=f,=p, against H,: I, 1<t<n—-1; o
:..':O{‘c#alﬂrl:“.:an andﬁl:."Zﬁr7éﬁr+1=."=ﬁn’ (2)

where 7 is the unknown change-point. When t = 7 (a fixed value) is known, the generalized
likelihood ratio statistic for testing H, against H  is given by

{(mﬂyél exp(—azy?)”wﬁ*wf [T exp(—a* 3 y)}
i=1 i=1
3)

A, = =141 i=i+1
B n n ~ n a
{(&ﬂ)” [ exp(—& ny) }
i=1 i=1
where a, ﬁ are the mles based on Y, ..., Y,; o*, f* are the mles basedon ¥, |, ..., ¥, and a, ﬁ
are the mles based on Y, ..., Y,. The mles & and f may be computed by solving the system of
non-linear likelihood equations given by
11 v
x T . =0
o0 n ; !
1 1 n & n N (4)
T-|-72:logYi—fX:Y{?IOgY,- = 0.
poni= i3
Similar systems of equations may be applied to compute both a, /~3 and o*, f*.
When 7 is unknown, the log likelihood ratio statistic may be obtained as
Q,= max (2logA, ). (5)

1<t<n-1

One rejects the null hypothesis H, for large values of Q, . The finite sample null distribution of Q,
is quite complicated. Its asymptotic null distribution, however, is tractable and the result is stated
below with its proof appearing in the Appendix:

lim P(x(logn)Q)* < x + b(logn)) = exp(—2¢ ™), x € R, (6)

where a(s) = (2logs)"/?, and b(s) = 2logs + loglogs. In our experience, the above limiting
distribution provides better accuracy for large values of the sample size n.

3. MAXIMUM LIKELIHOOD ESTIMATION OF THE CHANGE-POINT

We now consider the problem of estimating the unknown change-point through the principle of
maximum likelihood estimation (mle). The method has been previously considered by Hinkley
(1970, 1972), Worsley (1986), Bhattacharya (1987, 1994), and recently by Jandhyala and
Fotopoulos (1998, 1999), Fotopoulos and Jandhyala (1998) and Jandhyala et al. (1998). Other
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approaches to the estimation problem may be found in Cobb (1978), Siegmund (1988), and
Rukhin (1994).

In his pioneering work, Hinkley (1970, 1972) derived the asymptotic distribution of the mle of
a change-point in a single parameter when the parameter is both known and unknown. Impor-
tantly, he found that the distributions of the mle were asymptotically identical when the
parameter was known or unknown. Recently, Jandhyala and Fotopoulos (1998, 1999) derived a
computationally efficient algorithm for approximating the asymptotic probability distribution of
the mle. They also derived sharp upper and lower bounds for these asymptotic probabilities. The
bounds as well as the two approximations are applicable widely including members of expo-
nential family, and were implemented to both normal and exponential cases. Furthermore, they
established exponential rate of convergence for the probability distribution of the mle from finite
samples to the case of infinite samples. Fotopoulos and Jandhyala (1998) derived the exact
computable form of the asymptotic distribution of the mle for the exponential case, and
Jandhyala et al. (1998) addressed the problems of detection and estimation of a change in the
variability of a process.

Although the Weibull distribution involves more than one parameter, the basic approach
derived for the single parameter case by Hinkley (1970, 1972) and Jandhyala and Fotopoulos
(1998, 1999) may also be adapted for the multi-parameter case. It may be noted that the
asymptotic equivalence result of Hinkley (1972) holds in the multi-parameter case also as long as
the point estimators of the parameters both before and after the change-point are consistent. The
regularity conditions of Gombay and Horvath (1994a) stated in the Appendix are sufficient for
the consistency to hold. We have already demonstrated in the Appendix that the Weibull
distribution satisfies these regularity conditions. Thus, our plan is to develop an algorithmic
procedure for determining the asymptotic distribution of the mle for the change-point in the
Weibull case assuming the parameters to be known both before and after the unknown change-
point. The Weibull distribution is not a member of the exponential family and we are not aware
of works in the literature that compute the asymptotic distribution for a member outside of the
exponential family.

The asymptotic procedure that we develop provides an approximation as well as both upper
and lower bounds for the asymptotic distribution of the mle. In our presentation, the
development of the algorithm progresses simultaneously along with its application to the data on
extreme temperatures in Uppsala, Sweden. The algorithm, however, may be applied to any
arbitrary set of changing Weibull parameters. For purposes of estimating the change-point, we
consider here the case of changes occurring in both the Weibull parameters. Among the other
two situations, the case of a change in f alone is relatively easier and is not considered in the
paper. On the other hand, the case where a change occurs in o alone is equivalent to that of
estimating the change-point in an exponential parameter. It may be recalled that the exponential
case has been fully discussed in Fotopoulos and Jandhyala (1998) and Jandhyala and Fotopoulos
(1999).

Let (o, By) and (o, B,), oy # oy, By # B, be the Weibull parameters before and after the
unknown change-point 7, 7 € {1, 2, ...,n — 1}. For fixed known values of (,, ) and («,, f,) the
mle of T may be obtained as

J
T, = arg max Z w., (7)

i
1<j<n-1 i—1
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where W, = log (A(Y;; o, BN Yo, B,)) with f representing the Weibull density function~ as
denoted in (1). When («,, f,) and (o, , ;) are unknown, first the induced likelihood function L(r)
is given by

L(7) = max Hf(yl, 0y, Py) max Z S oy, By ®)

(. )l T+1
The maximum likelihood estimate 7, in this case is:

7, = arg max L(j). )

1<j<n—l1

Since 7, and 7, have the same asymptotic distribution, henceforth, we shall work with the
distribution of 7, only. Our interest is to compute the asymptotic probability distribution of 7,,
namely that of 7 obtained by letting both 1 — oo and n — 7 — oo. It is, however, more
convenient to work with 7, — 7 instead of 7, whereby we have

T+j
T —1T=  arg max Z W.= argmax &()), (10)

n 1
-+l <j<n—t—179 —1+1<j<n—1-1

where
- % *
Y Xf=sSt j>0
T+j T i=1
=Y W= w;=10, j=0
i=1 i=1 =
X, =S, j<0,
i=1
with X, =-W forl<i<t-—1and X* for 1 <i<n— 1. The random walks

—v—i+1° r+1’
= {S on =0} and S* = {S* n = 0} are 1ndependent but not necessarlly identical. Further-

more, both walks have negative means and will eventually drift to —oo. The algorithm that we
develop for computing the asymptotic distribution of 7, — v depends extensively on the two
random walks S and S*. Let X and X* represent the initial random variables associated with S
and S* respectively.

In the sequel, we shall require the probability distributions as well as the moment generating
functions of both X and X*. First, we express X and X* in terms of U, a uniform [0,1] random
variable.

ﬁl - ﬁo -1 1 1 -1 Bi/bo 1ﬁ1
X =10 1 log— — 1 log—1=L (11
g, og(% legr—y tlogr—F —a % logr—— + %8, B, (11)

'BO _ :81 ( _ 1 > 1 -1 1 Bo/ By 0180
X* = ————1log| o, log + log——— —a,| o, log + 1o g—. (12)
B, : 1-U 1-u O\ 1-U B,
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It may be noted that X and X* are dual to each other in the sense that one may be obtained from
the other by interchanging the subscripts in the parameters (o, f,) and («,, ;). Some tedious
calculations will show that X and X* have the following moment generating functions.

1—sV
(O‘f‘)m‘) ol By DZ( S’W”’ )

%
olB\ d /; ho +i+1
1 rf—/———— 13
x ( 0y ) ﬁ]/ﬂo (13)
s\ 51 1—sV
* ﬂo)x—l OCOI/ 0 —Y+ﬁ /,BO(Y—I) ( Sﬂ /ﬂo)
() = ( A, - Z
LB\ ﬁoﬁ_ﬁlerHl
1 r 1 . 14
% ( Oy ) ﬂo/ﬁ1 (14

We shall now propose methods for computing upper and lower bounds as well as two
approximations for the asymptotic distribution of 7, — 7. The methodology follows somewhat
analogously to the treatment contained in Jandhyala and Fotopoulos (1999). Accordingly, we
first require the following quantities all related to X and X*. However, due to the duality between
X and X*, we omit the expressions for the “*’ counterpart where no confusion arises.

9 =sup{se R :m(s) < 1}
PX >1) )
h(t) = , a, = suph(r) and a, = inf A
) TFexp(d(x — n)dP(X <x)” 1720 (1) and a; = inf (1)
b, = P(S,>0), d, = E[S IS, >0)], b (9% = Ee " IS, >0)], n>1

n

B(s) = Zs"b /n, 0<s<1l;p=1—-e?D; y= Zdn/n
n=1

and the sequences {¢q,; n = 0}, {5, (3*); n > 0} obtained from the iterative procedures:

n—1 n—1

gy =1land ng, =Y b,_q. n>1: iy(9*) = 1 and nii,(9%) = Y _ b, (9)i(9%), n> 1
Jj=0

J=0

(15)

Further, denote 4,(w) = e~ #"V{g} — wif(9)} and A}(w) = e PV{g; — wi,(9*)},j € Z*, where »
may assume one of several parameters As demonstrated in Jandhyala and Fotopoulos (1999),
the asymptotic probabilities then admit the bounds stated in I below, and the two
approximations stated in II and III.

(M) A ) < PGy — 1= )) < Afery). AT0H) < Py — © = =) < Aed), je Z*
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() A(p) = Pliy, =7 =) AT(p*) = P(iy, — 7 = —j).j € Z*
(D) And) = Pt —© = )), Ap*9%) = Pt — 1= —j), je Z*.

In some applications, it may happen that 3 = 3* = 1, in which case the approximations II and
IIT would be identical.

Computation of the bounds in I and the approximations in II and III primarily requires that
one is able to compute 9, A(1), {b,}, {d,} and {En(g*)} and their ‘*’ counterparts. The remaining
parameters and sequences may then be obtained routinely as functions of the above. We shall
now state some remarks regarding the computation of 3, A(z), {b,}, {d,} and {17:1(9*)}.

Computation of 3. The moment generating function m(s) given in (13) provides the value for 3.
It may, however, be noted that (13) is quite complicated in s, and at times may be sensitive for
computations. In such cases, we suggest the evaluation of m(s) based on simulations. The
simulations are quite straightforward given that X asin (11) is expressed conveniently in terms of
U, the uniform [0,1] random variable.

Computation of h(t). This requires the computation of P(X > t) and

/ ~ exp(9(x — H)AP(X < x).

Both of these quantities are complicated for direct computation. Consequently, we found it
convenient to obtain /(f) based on simulations. The simulations involve only X and one can
obtain any desired level of accuracy by performing sufficiently large number of simulations.
Computation of {b,}, {d,} and {l;n( 9*)}. Here again, direct computations appear intractable
and we suggest using simulations when n is small. Otherwise, excellent approximations are
available in the literature (Veraverbeke and Teugels 1975). The approximations are easy to apply
and in many situations readily provide values of good accuracy when n = 10 or even smaller
depending on the parameter values. The relevant approximations are stated below:

(i) b, =cn 2y ¢ = 1/nqu/2n
(i) d,=~ czn‘1/2y”, C, = 1/m*y'2y/2n
(iii) 5,(9%) = c;n™ /", ¢y = /(v + 9)V/2m.

where, n = /m”(v)/y, y = infm(s) and v is such that m(v) = infmn(s).

4. CHANGE-POINT ANALYSIS OF DATA ON EXTREME TEMPERATURES

The process of measuring daily temperature measurements started in Uppsala, Sweden, as early
as 1712—1713. Anders Celsius, then Professor of astronomy at the University of Uppsala, showed
great interest in collecting temperature measurements and there is almost complete daily
temperature data from the year 1739. The measurements for the early period of 1739—-1838 were
made only three or four times a day and thus were based on discrete recordings. With the
installation of a max—min thermometer in 1839, recording of the true minimum was possible
through continuous temperature readings. Thus, lower extreme minimum values were to be
expected subsequent to the year 1839. This effect may be expected to be particularly large for the
minimum temperatures during the summer months, since the lowest temperatures occur very
early in the morning at that latitude. The discrete recordings prior to 1839 were, however, made
when the sun had been up for several hours. While discussing applications of extreme value
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Min Temperatures in Uppsala

1774

1824

1874

1924

1974

year

Figure 1. Minimum temperatures in Uppsala, Sweden, 1774-1981

theory, Leadbetter er al. (1983, p.279) reported the minimum temperature data for the month
of July beginning from the year 1739. They extracted this data from the original manuscripts
compiled by Sverker Hellstrom. The early years of data, however, had some missing observations
and complete data was reported beginning from the year 1774. Figure 1 thus represents the
monthly minimum temperatures in Uppsala, Sweden for the month of July between the years
1774 and 1981, consisting of 208 observations. Due to the inaccessibility of the original numerical
values, we also present the data in Table I as read from Figure 15.1.1(b) of Leadbetter et al.
(1983, p.279).

Table I. Minimum temperatures in Uppsala, 1774—1981 (numbers are read from left to right)

9-5
89
89
8-0
10-0

11:0
7.0
74

10-2
85
8-0

11-5
7-2
9:2

10-7
69
5.

11-7
9-5
10-5
9-8
10-9
11-8

85
9-5

7-0

81
7-0
12-0
82
9-6
10-0

92
77
9-6
8-0
10-1
13-0
90

7-0
12-5
11-0

6-8

7-0
11-0

73

4.9
10-8

99 9-5 7-0
9-0 10-0 10-0
11-0 10-1 8-0
6-0 69 9-7
7-0 6-2 12.0
12-4 85 15-1
7-3 5-6 73
6-3 99 3-8
7-1 1-0 4-8
77 7-2 79
6-6 10-3 7-0
77 52 2-8
6-7 4-0 79
6-3 6-5 87
9-7 6-9 6-7
99 10-4 87
77 92 6-6
8-0 6-4 9-7
99 9-0 8-6
7-6 10- 11-3
121
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The data being monthly minimum temperatures (extreme values), one may expect the Weibull
distribution to fit the data well. In this analysis, we are concerned with the dynamic stability of
the scale and shape parameters associated with the Weibull distribution. We formulate this
dynamic stability as a change-point inferential problem. The formulation begins with the
assumption that the monthly minimum temperatures are independent. Subsequently, we will
substantiate the validity of the independence assumption as well as that of a Weibull fit to the
data. To ensure positivity, we add an arbitrary value (2°C) to all observations.

4.1. Detection of change-points

First, we apply the detection methodology discussed in Section 2 in order to detect unknown
changes in the monthly minimum temperature data. Figure 2 is a plot of the log likelihood ratio
statistic, 2 logA,, for 1 =1, ..., 208. From Section 2, it follows that this statistic tests for
unknown changes in both o and f3, the scale and shape parameters of the underlying Weibull
distribution.

This plot shows the maximum at the year 1837 with the statistic being Q,,; = 27-51. The
sample size n = 208 being large, the asymptotic distribution of Q, given in (6) is applicable. The
corresponding p-value = 0-00645 and thus the analysis clearly identifies a significant change at
the year 1837 (7,,4 = 64).

Figure 2 also shows several local maxima around 1900—1930. The occurrence of these local
maxima might illustrate the instability of the likelihood ratio or the presence of another change-
point between the years 1900 and 1930. This requires further analysis on data for the years 1838—
1981. The corresponding statistic value is Q,,, = 39-62, with p-value = 0-001, thus identifying
another significant change during the year 1912 (7,,, = 75). We couldn’t fail to notice a
diminishing effect of the second change-point at 1912 on the overall statistic Q,,, with all the 208
observations. For this reason, we considered data between the years 1774 and 1912 where we may
anticipate the occurrence of only a single change-point. The corresponding statistic is
0,3 = 51-75 with maximum at 1839 (7,5, = 66) and the p-value = 0-0002. As expected, this
p-value is now much higher than the previous p-value with all the 208 observations. Note that the
change-point estimated shifted by two years, from 1937 to the year 1939. Since the data between

30 —

20

10

T T T [
Index 50 100 150 200

Figure 2. Plot of 2 logA, , for years 1774-1981
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the years 1774 and 1912 is free of the effect of the second change-point, we consider the year 1939
to be the mle for the first change-point. No other significant changes were found in the data.

The first change detected at the year 1839 may be justified by the transition in the method of
data collection. We may recall that prior to the year 1839, data was collected discretely based on
three or four daily measurements, sometimes at irregular intervals. However, from 1839 onwards,
temperatures were measured with the max—min thermometer and thus gave precise values for the
extreme measurements. The justification for the second change-point detected at the year 1912
required a careful enquiry. By the end of the 19th century, apparently, the city of Uppsala was
transformed from a small educational and religious center to an industrialized transportation
hub. Some urbanization effect should therefore be expected around the beginning of the
20th century, thus resulting in higher temperatures from that period onwards.

Before we apply the estimation analysis of Section 3, we present the p-values for Weibull 32
goodness-of-fit tests for the three data segments 1774—1839, 1840—-1912 and 1913-1981. The
respective p-values are 0-1764, 0-5911 and 0-9567. These values indicate the appropriateness of
the Weibull model for all the three segments. The evidence is particularly overwhelming for the
last two data segments. We also present in Figure 3 the auto-correlation and partial auto-
correlation plots for the residuals of the three data segments. The plots clearly show no evidence
of serial correlations in the data and thus support the assumption of independence among the
time-ordered observations.

4.2. Estimation of the unknown change-points

Here, we implement the estimation methodology presented in Section 3 and calculate the
asymptotic probability distributions of the mles of the two unknown change-points. In particular,
this will enable us to provide confidence intervals of any desired level for the change-points. Since

1774-1839 1774-1839
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Figure 3. The auto-correlation and partial auto-correlation plots of the three segments
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the mle is known to be inconsistent, the information provided by the confidence intervals assumes
greater significance.

We fully illustrate the estimation methodology for the data set 1774—1912 with the mle given by
T = 60, i.e., the year 1839. First, we present the conditional mles of the Weibull scale and shape
parameters corresponding to before and after the mle 7 = 66. Solving the two likelihood
equations in (4), we get &._¢c = 0-0000057, B _ss = 5-19613 and &, ;_qs = 0-000429, ;. =
3.86486. Basing upon the asymptotic distributional equivalence result of Hinkley (1972), we
assume the above conditional estimates to provide known values for the respective parameters.
Thus, we let a, = 0-0000057, B, = 5-19613 and o, = 0-000429, B, = 3-86486. These parameter
values enable us to generate the random variables X and X* given by equations (11) and (12).

The estimation methodology discussed in Section 3 requires that we first compute 9, o, o,,
{0}, ‘{[;;1(9*)}» {d,}, B(1), p and u. We also need to compute the “*’ counterparts of the above
quantities. Furthermore, in order to implement the large scale approximations suggested by
Veraverbeke and Teugels (1975), we need to compute y, v and # and also their “*’ counterparts.
These computations begin by first computing the mgfs m(s) and m*(s) expressed respectively in
(13) and (14). Since these expressions are complicated, we found it convenient to evaluate the two
mgfs based on simulations. The two mgfs computed are presented in Figure 4.

The computations result in 3 = 100083, y = 0-798595, v = 0-46303, n = 1-34487 and
9* = 1.00588, y* = 0-798358, v* = 0-53852, n* = 1-34071. Next we evaluate the functions
h(t) and h*(r) (see Figure 5) to get the values fgr %5 0y and o), o. N

Accordingly, we have o, = 1, @, = 0 and o; = 1, o, = 0. The quantities {b,}, {6,(3*)} and
their “*’ counterparts may now be computed. The first 10 values in each of these sequences have
been computed based on 200,000 simulations. Subsequent values were all computed using the
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Figure 4. The moment generating functions mi(s) and m*(s)
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Figure 5. The functions /4(7) and /h*(¢)
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Table II. Computed values for various sequences

* *

b by b,(9%) b(9) 4y G 7,(9%) Z,(9)

n

0-2936 0-2135 0-1520 0-1155 0-2936 0-2135 0-1520 0-1155
0-1942 0-1515 0-0876 0-0737 0-1402 0-0985 0-0553 0-0435
0-1390 0-1087 0-0583 0-0511 0-0791 0-0540 0-0267 0-0215
0-1001 0-0788 0-0402 0-0349 0-0478 0-0321 0-0145 0-0116
0-0738 0-0608 0-0283 0-0262 0-0304 0-0207 0-0084 0-0071
0-0556 0-0464 0-0217 0-0197 0-0201 0-0137 0-0054 0-0045
0-0414 0-0345 0-0152 0-0140 0-0135 0-0092 0-0034 0-0028
0-0324 0-0266 0-0114 0-0110 0-0094 0-0063 0-0022 0-0019
0-0249 0-0206 0-0088 0-0080 0-0066 0-0044 0-0015 0-0013
10 0-0196 0-0166 0-0068 0-0066 0-0047 0-0032 0-0011 0-0009
11 0-0163 0-0140 0-0051 0-0049 0-0035 0-0024 0-0007 0-0006
12 0-0124 0-0107 0-0039 0-0037 0-0026 0-0018 0-0005 0-0005
13 0-0095 0-0082 0-0030 0-0029 0-0019 0-0013 0-0004 0-0003
14 0-0073 0-0063 0-0023 0-0022 0-0014 0-0009 0-0003 0-0002
15 0-0057 0-0049 0-0018 0-0017 0-0010 0-0007 0-0002 0-0002
16 0-0044 0-0038 0-0014 0-0013 0-0007 0-0005 0-0001 0-0001
17 0-0034 0-0029 0-0011 0-0010 0-0006 0-0004 0-0001 0-0001
18 0-0026 0-0023 0-0008 0-0008 0-0004 0-0003 0-0001 0-0001
19 0-0020 0-0018 0-0006 0-0006 0-0003 0-0002 0-0001 0-0001
20 0-0016 0-0014 0-0005 0-0005 0-0002 0-0002 0-0000 0-0000
21 0-0012 0-0011 0-0004 0-0004 0-0002 0-0001 0-0000 0-0000
22 0-0010 0-0008 0-0003 0-0003 0-0001 0-0001 0-0000 0-0000
23 0-0008 0-0006 0-0002 0-0002 0-0001 0-0001 0-0000 0-0000
24 0-0006 0-0005 0-0002 0-0002 0-0001 0-0001 0-0000 0-0000
25 0-0005 0-0004 0-0001 0-0001 0-0001 0-0000 0-0000 0-0000

S

O 01NN B W~

large sample approximations suggested in Section 3. In the case of this example, we found the
large sample approximations to be quite accurate from as small as n = 5 onwards for all the
sequences. The sequences {g,}, {7,(3*)} and their ‘*’ counterparts may now be computed based
on the recursive relations expressed in (15). Table II provides the values for all of the sequences
up to n = 25.

Recall that we have 9 = 1-00083 and 3* = 1-00588. Since these values are close to unity, it
follows from our discussion in Section 3 that the approximations II and III for the asymptotic
distribution of the mle will be identical. Thus, in Table III, we now provide the lower bound,
approximation II and the upper bound for the asymptotic probabilities, P(1,, — 7 = j),j = —20,
—19, ..., 20. In the table, the ‘Sum’ refers to sum of all the significant terms (up to the seventh
decimal place) in each column. Accordingly, the ‘Sum’ is based on terms for j = —30, =29, ...,
30 even though the probabilities presented range between j = —20, —19, ..., 20. We may note
that the bounds are quite tight and that the approximation works out to be extremely accurate.
The shortest 95% confidence interval for the unknown change-point, based on the probabilities
from the approximation column, is found to be 1839 + 5, i.e., the years 1834, ..., 1844.

The asymptotic probability distribution of the second change-point detected at 1912 has also
been computed implementing the above estimation procedure. Table IV provides the corres-
ponding asymptotic probability distribution. The 95% confidence interval for the mle in this case
is found to be 1912 £+ 7, i.e., the years 1905, ..., 1919. For this data segment, the scale and shape
parameters after the change-point were found to be 0-0000018513 and 5-85506, respectively.
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Table I1I. Probability distribution of 7. —

j Lower bound Approximation Upper bound
-20 0-00011 0-00013 0-00014
—19 0-00015 0-00017 0-00018
—18 0-00020 0-00023 0-00025
-17 0-00027 0-00031 0-00033
—16 0-00036 0-00042 0-00045
—15 0-00049 0-00057 0-00060
—14 0-00066 0-00077 0-00082
—13 0-00090 0-00105 0-00112
-12 0-00123 0-00144 0-00154
—11 0-00167 0-00197 0-00211
—10 0-00222 0-00265 0-00285

-9 0-00306 0-00368 0-00397

-8 0-00433 0-00524 0-00566

=7 0-00611 0-00749 0-00814

—6 0-00886 0-01108 0-01211

=5 0-01326 0-01673 0-01834

—4 0-02012 0-02608 0-02885

-3 0-03158 0-04256 0-04766

-2 0-05116 0-07394 0-08453

-1 0-08537 0-14792 0-17699

0 0-41161 0-41161 0-41161
1 0-06691 0-11446 0-14577
2 0-03757 0-05547 0-06726
3 0-02217 0-03104 0-03687
4 0-01399 0-01878 0-02192
5 0-00928 0-01220 0-01412
6 0-00629 0-00815 0-00937
7 0-00433 0-00549 0-00626
8 0-00300 0-00380 0-00432
9 0-00216 0-00269 0-00303
10 0-00156 0-00194 0-00220
11 0-00122 0-00148 0-00166
12 0-00090 0-00108 0-00121
13 0-00066 0-00079 0-00088
14 0-00048 0-00058 0-00064
15 0-00036 0-00042 0-00047
16 0-00026 0-00031 0-00035
17 0-00020 0-00023 0-00026
18 0-00015 0-00017 0-00019
19 0-00011 0-00013 0-00014

20 0-00008 0-00010 0-00011

Sum 0-815359 1-01533 1125264

The confidence interval estimates in both cases provide much needed information. It may be
noted that the confidence interval for the second change-point includes the early years of the
20th century. History suggests that rapid industrial development took place in Uppsala during
that period. This rapid industrialization should have had subsequent effect on the temperatures in
and around Uppsala, Sweden.
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Table IV. Probability distribution of 7. — 7 (second change-point)

j Lower bound Approximation Upper bound
—15 0-00128 0-00148 0-00163
—14 0-00161 0-00188 0-00206
—13 0-00204 0-00238 0-00262
—-12 0-00257 0-00302 0-00334
—11 0-00321 0-00380 0-00423
—10 0-00374 0-00452 0-00509

-9 0-00488 0-00597 0-00675

-8 0-00636 0-00784 0-00889

-7 0-00841 0-01045 0-01191

—6 0-01141 0-01438 0-01652

=5 0-01574 0-02010 0-02324

—4 0-02228 0-02914 0-03408

-3 0-03195 0-04347 0-05175

-2 0-04768 0-06953 0-08524

-1 0-07398 0-12610 0-16359

0 0-33306 0-33306 0-33306
1 0-07226 0-12398 0-16259
2 0-04587 0-06716 0-08305
3 0-03058 0-04180 0-05017
4 0-02115 0-02782 0-03279
5 0-01510 0-01941 0-02263
6 0-01102 0-01391 0-01607
7 0-00812 0-01010 0-01158
8 0-00611 0-00756 0-00864
9 0-00462 0-00566 0-00643
10 0-00353 0-00427 0-00482
11 0-00305 0-00363 0-00406
12 0-00244 0-00288 0-00321
13 0-00194 0-00227 0-00252
14 0-00153 0-00179 0-00198
15 0-00122 0-00142 0-00156
Sums 0-80840 1-02185 1-17824

APPENDIX

Proof of equation (6): Gombay and Horvath (1994a) established the asymptotic null distribution
of the log likelihood ratio statistic under regularity conditions C1-C7. We refer the reader to their
paper for statements of conditions C1-C7. Below, we briefly demonstrate the applicability of
these regularity conditions for the two parameter Weibull distribution.

Let g(y; «, f) = logf(y; «, f) and let

am +k

—9 mk=0,1,...
aamaﬁkg

g%”’/fk =

denote the respective partial derivatives of g with respect to o and f.

Cl: The uniqueness of the maximum likelihood estimators is shown in Farnum and Booth
(1997).
C2: The existence and continuity of g ,, g L <m+ k < 3, may be verified easily.
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C3: The boundedness and integrability of gumpis 1 < k < 3 also follow in a straightforward
manner.

C4:  First, one shows that g,(v; o, f) = 1/a— yf and gy(v; o, B) =1/ +logy — ay/logy.
Then, it can be shown that E[Y?] = 1/x and E[log Y] = —1/ + aE[Y#log y]. It follows
then that E[g,(yv; o, f)] = Elgy(y; o, f)] = 0.

C5: We need to show: (i) E[gi] = —E[g,]; (i1) E[g“gﬁ] = —E[g“ﬁ]; (ii1) E[gf;] = —E[gﬁz].

As for the next part, that the inverse of the information matrix exists and its elements are
continuous follows from the forms of the above expectations. We only provide details for
showing (iii). The details for showing (i) and (ii) are relatively easier. First note that

12 2
&= prplert log’y — Fayﬁ logy — 20" log’ y + o’y log’ y, and

1 2
gp = —<—2+ocyﬁlog y).
i
The following non-trivial expressions then prove (iii):

11 2 1 1
EY'log Y] = — + ~ Ellog Y]; E[Y"log Y] = — + — Ellog Y] + ~ E[Y’ log Y];
af o ?f o
2 1
EY'log® Y] = @E[log Y]+ &E[logz Yl;
2
o?f

EY*log® Y] = — Ellog Y] + %E[Iogz Y]+ %E[Yﬁ log Y] + éE[Yﬁlogz Y1.

Conditions C6 and C7 follow upon showing that E[Y”log” Y] < oo, p € Rt and m € N. The
finiteness of this expectation, however, follows from

an‘l

(67"T'(p)) < o0,
avl’ﬂ

< o
/ X’ e ™ log" x dx =
0

where p, 0 > 0 and m € N. The above equation may be found in Gradshteyn and Ryzhik (1980,
p. 578).
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